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Resonances and Virtual Poles in Scattering Theory
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Sufficient criteria for the coincidence of resonances and nonreal virtual poles in scatter-
ing systems are presented. A Gelfand triplet is constructed such that eigenfunctionals
of the extended Hamiltonian exist exactly for the resonances.

KEY WORDS: resonances; virtual poles; scattering theory; Gelfand triplets.

1. INTRODUCTION

In this section we collect basic assumptions and results on our central ob-
jects to fix our notation. LetH be a separable Hilbert space andH a self-adjoint
operator onH. The domain domH ⊂ H is dense inH , its resolvent is denoted
by R(z) := (z− H )−1. Its spectrum is real, specH ⊆ R. We assume that there is
only eigenvalue spectrum and absolutely continuous spectrum.

The spectral measure ofH is denoted byE(·). Borel sets ofR are denoted by
1. Recall the spectral theoremH = ∫∞−∞ λE(dλ). Pac denotes the absolutely con-
tinuous projection. The projectionI− Pac= P0 is the projection onto the closed
linear span of all eigenvectors ofH . For f ∈ PacH one has:1→ ( f, E(1) f ) is
absolutely continuous w.r.t. the Lebesgue measure. The scalar product (f, g) on
H is assumed to be antilinear inf and linear ing.

We assume that spec{H ¹PacH} = [0,∞) i.e., the absolutely continuous
spectrum is nonegative, and it has homogeneous multiplicity. Under our as-
sumptions thespectral representation theoremreads as follows:H ¹PacH is
unitarily equivalent to the multiplication operator byλ on the Hilbert space
PacH ∼= L2([0,∞), dλ,K), dλ the Lebesgue measure, whereK denotes a sepa-
rable Hilbert space; dimK represents the multiplicity of the absolutely continuous
spectrum. Recall that the elementsf ∈ PacH are given byK-valued functions

R+ 3 λ→ f̂ (λ) ∈ K :
∫ ∞

0
‖ f̂ (λ)‖2K dλ < ∞.
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One has (f, g) = ∫∞0 ( f̂ (λ), ĝ(λ))Kdλ, E(1) is given by the multiplication
operator with the characteristic functionχ1(·), of 1, the vectorH f corresponds
to the functionλ→ λ f̂ (λ) andeit H f to λ→ eitλ f̂ (λ). One has

( f, E(1) f ) =
∫
1

( f̂ (λ), f̂ (λ))K dλ,

and

f, E(dλ) f )

dλ
= ( f̂ (λ), f̂ (λ))K,

exists a.e. on [0,∞].
Theevaluation operator Dλ atλ is defined (in the moment pure formally) by

Dλ : L2([0,∞), dλ,K)→ K, Dλ f̂ := f̂ (λ).

Later we will discuss existence questions forDλ on appropriate submanifolds.
Further we introduce a second self-adjoint operatorH0 on H, called the

“free Hamiltonian.” Again we assume thatH0 has only eigenvalue spectrum and
absolutely continuous spectrum [0,∞) with homogeneous multiplicity. It is as-
sumed that there is only a finite number of eigenvaluesµ of finite multiplicity,
which are embedded, i.e.,µ ∈ (0,∞). Then the projectionI− Pac

0 = P0 is finite-
dimensional, where againPac

0 denotes the absolutely continuous projection ofH0

andP0 is then the projection onto the linear span of all eigenvalues ofH0.
The spectral measure ofH0 is denoted byE0(·) and the corresponding eval-

uation operator byD0
λ.

We assume thatH andH0 are connected by a so-calledperturbation V, which
is not necessarily bounded. First we give a pure formal ansatz: For technical reasons
we put

V := A∗C A, C = C∗, B := C A.

C is a bounded operator on an auxiliary Hilbert spaceF , which is introduced
to have a measure‖C‖ for smallness of the perturbation.A is a closed operator
formH toF . We put formally

H := H0+ V.

In Section 3 we present criteria onV such thatH is equipped with the properties
mentioned before. Note thatH may have negative eigenvalues. We mention the
wave operators (M¨oller operators), denoted byW±:

W± := s-limt→±∞ eit H e−i t H0 Pac
0 .

The so-calledcompleteness propertyof the wave operators reads

W±(Pac
0 H) = PacH.
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In this case the scattering operatorS := W∗+W− commutes with all projec-
tions E0(1) of the spectral measure ofH0 and S¹Pac

0 H is unitary. Then, w.r.t.
the spectral representation ofH0, S acts as multiplication operator by a unitary
operator function

R+ 3 λ→ Ŝ(λ) ∈ L(K0),

the so-called scattering matrix, whereK0 denotes the multiplicity Hilbert space
for H0. That is the vectorS f ∈ H corresponds to the functionλ→ Ŝ(λ) f̂ (λ). We
putT := S− I. Then the functionλ→ T̂(λ) = Ŝ(λ)− IK0 is called the scattering
amplitude.

2. SOME PURE ALGEBRAIC RELATIONS AND THE LIV ŠIC-MATRIX

In the following exampleJz > 0. Then we have the relation

I+ B(z− H )−1A∗ = (I− B(z− H0)−1A∗)−1.

Next we define two operator functions:

8+(z) := B P⊥0 (z− H0)−1P⊥0 A∗,

0+(z) := (1−8+(z))−1.

Then the relation

I+ B(z− H )−1A∗ = 0+(z)+ 0+(z)B P0(z− H )−1P0A∗0+(z)

holds. The operator function

P0(z− H )−1P0

is called thepartial resolvent. Further we obtain the relation

A∗0+(z)B = V + V P⊥0 (z− H1)−1P⊥0 V,

where

H1 := H0+ P⊥0 V P⊥0 + P0V P0.

The auxiliary HamiltonianH1 commutes withP0. To get the Livšicmatrix first we
define

L+(z) := zP0− H0P0 − P0A∗0+(z)B P0

= zP0− H1P0− P0V P⊥0 (z− H1)−1P⊥0 V P0.

Then one obtains for the partial resolvent the expression

P0(z− H )−1P0 = P0{L+(z)¹P0H}−1P0.
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The operator functionz→ L+(z) ¹ P0H is called the Livšic-matrix. Note that
P0 is finite-dimensional. Therefore it is a matrix-valued function.

If we start with the lower half planeC− then the corresponding functions are
denoted by8−(z),9−(z) etc.

3. RESONANCES AND VIRTUAL POLES

3.1. Existence of the Scattering Matrix

Here we collect assumptions onV that guarantee Theorem 1 below.
In the following the upper half planeC+ := {z : Jz > 0} is used as the original

domain for the operator functions considered, i.e., in the beginning letJz > 0.

A1.1: AP⊥0 is H0-smooth (this implies thatAP⊥0 (z− H0)−1 is bounded). This
means

supε> 0

∫ ∞
−∞
{‖AR0(λ+ i ε)u‖2+ ‖AR0(λ− i ε)u‖2} dλ ≤ Cu < ∞

for all u ∈ P⊥0 H. This implies thatAR0(· + i 0)u ∈ H2
+(R, F) and AR0(· −

i 0)u ∈ H2
−(R, F) are Hardy class functions.

A1.2: The function

C+ 3 z→ AP⊥0 (z− H0)−1P⊥0 A∗ (1)

is holomorphically continuable acrossR+ = (0,∞) and defines a holomor-
phic operator function onC< 0 := C\(−∞, 0]. This implies thatAP⊥0 R0(λ+
i 0)P⊥0 A∗ is bounded for everyλ > 0.

(Note that (1) is a priori holomorphic not only onC+ but holomorphic in
C> 0 := C\[0.∞). Therefore the lower half plane ofC< 0 is called thesecond
sheetof (1), whereas the lower half plane ofC> 0 is the first sheet.)

A2: supλ> 0‖AP⊥0 R0(λ+ i 0)P⊥0 A∗‖ =: a < ∞.
A3: ‖C‖ < 1

a (smallness condition).

Then supλ> 0‖8+(λ+ i 0)‖ < 1 follows and 0+(λ+ i 0)= (I−8+(λ+
i 0))−1 is holomorphic onR+ = {λ : λ > 0}. Then, according to a theorem of
Gochberg/Krein (see Gochberg and Krein, 1957), one obtains thatz→ 0+(z) is
meromorphic onC< 0. Using the relations of Section 2 this implies that also

z→ 9+(z) := B(z− H )−1A∗

is meromorphic onC< 0. The poles of9+ are calledvirtual poles. Since9+ is
holomorphic onC+, for virtual polesζ one has necessarilyJζ ≤ 0. If ζ is real
thenζ is an eigenvalue ofH (this is used in the proof of Theorem 3).
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Theorem 1. Assume conditions A1–A3. Then: H is self-adjoint, the wave oper-
ators W±(H, H0) exist and are complete. H satisfies the conditions mentioned in
Section 1.

Therefore the scattering matrixŜ(λ) exists as a unitary operator onK0 a.e on
R+.

3.2. Analytic Continuation of the Scattering Matrix

In order to get analytic continuation for the scattering matrix, we need a
stronger assumption.

A4: FA(λ) := D0
λA∗ is a bounded operator fromF to K0 for all λ > 0 and this

function FA(·) is holomorphic continuable toC< 0.
A4 is a strengthening of A1, i.e., A4 implies A1. Recall (first formally) that

AP⊥0 E0(dλ)P⊥0 A∗

dλ
= 1

2iπ
(AP⊥0 R0(λ− i 0)P⊥0 A∗ − AP⊥0 R0(λ+ i 0)P⊥0 A∗)

or

AP⊥0 R0(λ+ i 0)P⊥0 A∗ = AP⊥0 R0(λ− i 0)P⊥0 A∗ − 2iπ
AP⊥0 E0(dλ)P⊥0 A∗

dλ
.

The left-hand side is, according to A1, holomorphic continuable onC< 0.
Therefore, the first term on the right-hand side is also holomorphic continuable on
C< 0 (starting with the lower half plane of the first sheet).

Hence also

AP⊥0 E0(dλP⊥0 A∗

dλ

is holomorphic continuable onC< 0. Foru, v ∈ F we have(
u,

AP⊥0 E0(dλ)P⊥0 A∗v
dλ

)
= (P⊥0 A∗u, E0(dλ)P⊥0 A∗v)

dλ
= (D0

λP⊥0 A∗u, D0
λP⊥0 A∗v

)
,

i.e., A1 implies and is equivalent to the statement that

φu,v(λ) := (D0
λP⊥0 A∗u, D0

λP⊥0 A∗v
)

is holomorphic onC< 0 for all u, v ∈ F . Therefore, if A4 is satisfied then also the
last statement, i.e., A1 is true.

If F A(·) is bounded then there is a well-known expression for the scattering
amplitudeT̂(·) (see, e.g., Baumg¨artel and Wollenberg [1983, p. 393]):

T̂(λ) = −2iπFA(λ)(C + C AR(λ+ i 0)A∗C)FA(λ)∗.

From this formula one obtains immediately
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Theorem 2. Assume the conditions A2–A4. Then:T̂(·) is meromorphic onC< 0.

The poles ofT̂ are calledresonances.

3.3. Coincidence of Resonances and Nonreal Virtual Poles

Recall that the functions9+ andT̂ are both meromorphic onC< 0.

Theorem 3. The poles of̂T and the nonreal poles of9+ coincide.

Proof: It is sufficient to prove that a nonreal poleζ of 9+ is a pole ofT̂ and a
real pole of9+ is a holomorphic point for̂T .

1. We have

C FA(λ)∗T̂(λ)FA(λ) = −2iπC FA(λ)∗FA(λ)

× (C +9+(λ)C)FA(λ)∗FA(λ).

It is sufficient to show thatζ is a pole of the left-hand side. Note that

C FA(λ)∗FA(λ) = 1

2iπ
C AP⊥0 (R0(λ− i 0)− R0(λ+ i 0))P⊥0 A∗

= 1

2iπ
(8−(λ)−8+(λ)).

This gives

C FA(z̄)∗T̂(z)FA(z) = − 1

2iπ
(8−(z)−8+(z))(I+9+(z))(8−(z)

−8+(z)).

RecallI+9+(z) = (I−8+))−1. This implies

8+(z)9+(z) = 9+(z)8+(z) = 9+(z)−8+(z).

Let ζ be a pole of orderm, i.e.,

9+(z) = (z− ζ )−mDζ + C(z), Dζ 6= 0, m≥ 1.

Then

lim
z→ζ

(z− ζ )m(8−(z)−8+(z))(I+9+(z))(8−(z)−8+(z))

= (8−(ζ )−8+(ζ ))Dζ (8−(ζ )−8+(ζ )) = (I−8−(ζ ))Dζ (I−8−(ζ ))
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because of Dζ = 8+(ζ )Dζ = Dζ8+(ζ ). But I−8−(ζ ) = I−
C AR0(ζ )A∗ and (I−8−(ζ ))−1 = I+ C AR(ζ )A∗. Hence

(I−8−(ζ )Dζ (I−8−(ζ )) 6= 0

follows.
2. A real poleξ of 9+ is a holomorphic point for̂T : First ξ is necessarily a

simple pole and an eigenvalue ofH . The residuum of9+ atξ is given by
D := BQ A∗, whereQ is the eigenprojection ofξ w.r.t. H , i.e., we have

9±(z) = BQ A∗

z− ζ + BQ⊥(z− H )−1Q⊥A∗.

Note that the residuum is the same for both functions9− and9+.
Further we use again (I+9±(z)) = (I−8±(z))−1 · ξ is a holomorphic
point for8−(z)−8+(z). We have to check the expression

(8−(z)−8+(z)

(
D

z− ξ + C(z)

)
(8−(z)−8+(z)).

Using 0= D(8−(ξ )−8+(ξ )) = (8−(ξ )−8+(ξ ))D, we obtain
thatξ is a holomorphic point for̂T . ¤

3.4. A Special Case: There Are No Embedded Eigenvalues (ofH0)

This means thatP0 = 0. In this case we haveI+9+(z) = 0+(z) and
FA(λ) = D0

λA∗. Therefore,9+ and9− are both holomorphic forλ > 0 and

AE(dλ)A∗

dλ

is meromorphic onC< 0.
As an illustration we consider a special case: LetC = I, H cyclic with gen-

erating unit vectore∈ PacH. In other words, we assume the multiplicity to be 1.
Let e= A∗e0. Then

(e, E(1) e) = (e0, AE(1)A∗ e0)

and

ρ(λ) := (e0, AE(dλ)A∗ e0)

dλ

is holomorphic onR+ and meromorphic onC< 0 · ρ(·) is called thespectral density.
Now let f, g be vectors fromPacH, generated by the functionsφ,9,

respectively, i.e.,f = φ(H )e, g = ψ(H )e. Then f = W+ f0, g = W−g0 where
f0, g0 ∈ H and

( f0, Sg0) =
∫ ∞

0
φ(λ)ψ(λ)ρ(λ) dλ.
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Now chooseφ andψ as restrictions toλ > 0 of functionsφ ∈ H2
+(R), ψ ∈

H2
−(R). Then

F(λ) := φ(λ)ψ(λ)ρ(λ)

is meromorphic onC−, the lower half plane, where possible poles are only due to
ρ(·). Then

∫ +R
−R +

∫
C = −2iπRes{F(z)} whereC denotes the negatively oriented

semicircel from+R to−R in the lower half plane and where Res means the sum
of all residua inside the corresponding semidisc. If limR→∞

∫
C = 0 then one has

( f0, Sg0) =
∫ −∞

0
φ(λ)ψ(λ)ρ(λ), dλ− 2iπResJz<0{F(z)}.

4. EIGENFUNCTIONALS FOR RESONANCES

In this section we consider the special case that there are embedded eigenval-
ues ofH0, i.e. we assume

B1: P0 > 0,
B2: z→ 0+(z) is holomorphic onC< 0, and
B3: A, B henceV are bounded.

This case is a counterpart to Section 3. B3 is assumed to avoid technical domain
discussions. Then we obtain immediately from Section 2.

Proposition 1. Assume additionally B1–B3. Then: The virtual poles are exactly
the poles of the partial resolvent, i.e., they are the zeros of the determinant of the
Livšic-matrix

det{L+(z) ¹ P0H}.

In this case one can introduce appropriate eigenfunctionals forH exactly for the
resonances, but not for other (nonreal) complex numbers.

4.1. Construction of the Gelfand Triplet

The idea is to use the spectral representation ofH1. Recall that B1–B3 together
with the results of Section 3 imply that also the wave operatorsW±(H1, H0) exist
and that they are complete, which implies thatH1¹Pac

0 H andH0¹Pac
0 H are unitarily

equivalent. Therefore, the absolutely continuous spectrum ofH1 is [0,∞] and it
has homogeneous multiplicity. We denote the corresponding multiplicity subspace
byK1 and the evaluation operator byD1

λ.
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Now we define a linear manifold8 ⊂ Pac
0 H. A vector f ∈ Pac

0 H is an element
of 8 iff

λ→ (
D1
λ f, D1

λ(P⊥0 V h)
)
K1

,

is holomorphic onC< 0 for all h ∈ P0H.
Then from Section 2 we obtain that

P⊥0 V P0H ⊂ 8.
8 is dense inPac

0 H (see Baumg¨artel, 1976). We omit the explicit construction of
a suitable locally convex topology in8 such that8 is complete and continuously
embedded inPac

0 H.
Since H1 is unbounded in general, one has to introduce additionally the

linear manifold81 : dom(H1¹Pac
0 ) ∩8, equipped with a slightly changed topol-

ogy (see Baumg¨artel, 1976). ThenH1 is a continuous linear operator from81

into 8, since together with (D1
λ f, D1

λ(P⊥0 V h))K1 also D1
λH1 f, D1

λ(P⊥0 V h))K1 =
λ(D1

λ f, D1
λ(P⊥0 V h))K1 is holomorphic onC< 0.

As the fundamental manifold inH we chooseD := 8⊕ P0H. We equipD
with the product topology of8 and P0H. ThenD is continuously embedded in
H. We haveD∗ = 8∗ × P0H, i.e., the antilinear forms fromD∗ are pairs (φ∗, h0)
with φ∗ ∈ 8∗ andh0 ∈ P0H, such that

〈(φ, x) | (φ∗, h0)〉 := 〈φ | φ∗〉 + (x, h0), φ ∈ 8, x ∈ P0H.

The Hilbert spaceH is canonically embedded intoD∗, that is we obtain the Gelfand
triple

D ⊂ H ⊂ D∗. (2)

Correspondingly we introduceD1 := 81⊕ P0H. ThenH is a continuous linear
operator fromD1 intoD because for anyx ∈ H one has (P0V P⊥0 + P⊥0 V P0)x ∈
D). The extensionH ∗ of H w.r.t. (2) (the so-called Gelfand triplet adjoint) is
defined by

〈(φ, x) | H∗(φ∗, h0)〉 := 〈H (φ, x) | (φ∗, h0)〉.

4.2. Eigenfunctionals forH∗

The eigenvalue equation forH∗ reads

H∗(φ∗, h0) = ζ (φ∗, h0), ζ ∈ C< 0.

Theorem 4. The nonreal complex numberζ ∈ C< 0 is an eigenvalue of H∗ iff
ζ is a resonance. In this case the eigenspace forζ (i.e. the linear span of all
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eigenvectors) is given by

ker{L+(ζ ) ¹ P0H} ⊂ P0H.

Proof: The eigenvalue equation can be split into two separate equations:

φ = 0 : (ζ̄ x − P0H1P0x, h0) = 〈P⊥0 Vx | φ∗〉, (3)

x = 0 : 〈(ζ̄ − H1)φ | φ∗〉 = (φ, P⊥0 V h0). (4)

ForJζ > 0 the solution of (4) is given by

〈φ |φ∗ζ 〉 := (φ, (ζ − H1)−1P⊥0 V h0.

Since (D1
λφ, D1

λ(P⊥0 V h0))K1 is holomorphic onC< 0 the antilinear formφ∗ζ is
holomorphic onC< 0. Inserting this solution into (3), we get (x, (ζ − H1)h0) =
〈P⊥0 V x | φ∗ζ 〉, i.e.,

Dx(ζ ) := (x, (ζ − H1)h0)− 〈P⊥0 V x | φ∗ζ 〉
should vanish for allx ∈ P0H. First letJz > 0. Then

Dx(z) = (x, {z− H1− P0V P⊥0 (z− H1)−1P⊥0 V}h0) = (x, L+(z)h0),

but this function is even holomorphic onC< 0 · Dx(z) = 0 for all x ∈ P0H means
simply L+(z)h0 = 0, i.e., a solutionh0 ∈ P0H, h0 6= 0, for a parameterz with
Jz < 0 exists iffz := ζ is a resonance. The eigen(anti-)linear forms for a resonance
ζ are given by

(φζ,h0,h0), h0 ∈ ker{L+(ζ )¹P0H},
where the antilinear formφ∗z,h0

for Jz > 0 is given by

〈φ | φ∗z,h0
〉 := (φ, (z− H1)−1P⊥0 V h0). ¤
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