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Resonances and Virtual Poles in Scattering Theory
H. Baumgértel!
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Sufficient criteria for the coincidence of resonances and nonreal virtual poles in scatter-
ing systems are presented. A Gelfand triplet is constructed such that eigenfunctionals
of the extended Hamiltonian exist exactly for the resonances.
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1. INTRODUCTION

In this section we collect basic assumptions and results on our central ob-
jects to fix our notation. Let. be a separable Hilbert space afda self-adjoint
operator orf{. The domain donH C H is dense irH , its resolvent is denoted
by R(2) := (z— H)™L. Its spectrum is real, spdd¢ < R. We assume that there is
only eigenvalue spectrum and absolutely continuous spectrum.

The spectral measure bf is denoted byE(-). Borel sets oRR are denoted by
A. Recall the spectral theorekh = [°°_ AE(d1). P2 denotes the absolutely con-
tinuous projection. The projectidn— P2° = P, is the projection onto the closed
linear span of all eigenvectors &f. For f € P2°H one hasA — (f, E(A)f)is
absolutely continuous w.r.t. the Lebesgue measure. The scalar prddgrioh
‘H is assumed to be antilinear inand linear ing.

We assume that spgdd |P2°H} = [0, c0) i.e., the absolutely continuous
spectrum is nonegative, and it has homogeneous multiplicity. Under our as-
sumptions thespectral representation theoremeads as follows:H P23 is
unitarily equivalent to the multiplication operator By on the Hilbert space
PaH = L?([0, 00), dA, K), dA the Lebesgue measure, whétalenotes a sepa-
rable Hilbert space; dirfiC represents the multiplicity of the absolutely continuous
spectrum. Recall that the elemeritss P2°H are given bykC-valued functions

Ry 3 A — f(,\)e/c:/ I f ()12 dx < oco.
0
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One has §,g) = foo"(f(/\), 9(A)cdA, E(A) is given by the multiplication
operator with the characteristic function (-), of A, the vectorH f corresponds
to the functiom. — A f (1) ande'™ f tox — € f(1). One has

(f, E(A)f) = / (£, FOx di.,

and
f, E(d)A) ) A -
— 2 2 (f()), f(r
o = (). T,
exists a.e. on [00].
Theevaluation operator R at is defined (in the moment pure formally) by

Dy : L([0, 00), dx, K) = K, D, f := f(h).

Later we will discuss existence questions By on appropriate submanifolds.

Further we introduce a second self-adjoint operatigron 7, called the
“free Hamiltonian.” Again we assume thblk has only eigenvalue spectrum and
absolutely continuous spectrum () with homogeneous multiplicity. It is as-
sumed that there is only a finite number of eigenvaluesf finite multiplicity,
which are embedded, i.q, € (0, co). Then the projectiofi — P = Py is finite-
dimensional, where agafP§® denotes the absolutely continuous projectiorgf
andPg is then the projection onto the linear span of all eigenvaluddgof

The spectral measure bf; is denoted byEy(-) and the corresponding eval-
uation operator byd?.

We assume tha andHg are connected by a so-callpdrturbation \ which
is not necessarily bounded. First we give a pure formal ansatz: For technical reasons
we put

V:=A'"CA C=C* B:=CA

C is a bounded operator on an auxiliary Hilbert spagevhich is introduced
to have a measurg’|| for smallness of the perturbatioA is a closed operator
form H to F. We put formally

H = Ho+ V.

In Section 3 we present criteria d&hsuch thatH is equipped with the properties
mentioned before. Note th&t may have negative eigenvalues. We mention the
wave operators (Mdller operators), denoted . :

W. := s-limy_, 1o, €H e7itHopac
The so-calledompleteness properbdf the wave operators reads

W, (PEH) = P,
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In this case the scattering operar= W;W_ commutes with all projec-
tions Eo(A) of the spectral measure ¢fy and S;P§°H is unitary. Then, w.r.t.
the spectral representation by, S acts as multiplication operator by a unitary
operator function

Ry 52 — 1) € L(Ko),

the so-called scattering matrix, whef® denotes the multiplicity Hilbert space
for Ho. That is the vectoB f € H corresponds to the function— S(x) f (1). We
putT := S— L. Then the function — T (1) = (1) — I, is called the scattering
amplitude.

2. SOME PURE ALGEBRAIC RELATIONS AND THE LIV SIC-MATRIX
In the following exampl&€jz > 0. Then we have the relation
I+ B(z— H)*A* = (I — B(z— Ho) tA") L.
Next we define two operator functions:
@, (2) '= BP;-(z — Ho) 1Py A",
[y =01-o.(2)"
Then the relation
I+B(z—H) A" =T.(2+ T+ (2BR(z— H) IRAT,(2
holds. The operator function
Po(z— H) Py
is called thepartial resolvent Further we obtain the relation
AT, (2B=V + VP (z— H) PV,
where
Hi:= Ho + PyV Py + PoV Py,

The auxiliary HamiltoniarH; commutes withP,. To get the Liwicmatrix first we
define

L+(Z) =zR — HoPy — PoA*F+(Z)B P
=2zRy — HiPy — PV Ry (z— Hy) 1Py V R
Then one obtains for the partial resolvent the expression

Po(z — H)™LPy = Po{L.(2)I PeH} P
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The operator functiom — L (2) | PyH is called the Ligic-matrix. Note that
P, is finite-dimensional. Therefore it is a matrix-valued function.

If we start with the lower half plan€ _ then the corresponding functions are
denoted byd_(2), ¥_(2) etc.

3. RESONANCES AND VIRTUAL POLES

3.1. Existence of the Scattering Matrix

Here we collect assumptions dhthat guarantee Theorem 1 below.
Inthe following the upper halfplarfé,. := {z: Jz > 0} isused asthe original
domain for the operator functions considered, i.e., in the beginnirglet 0.

Al.1: APR; is Ho-smooth (this implies thaA Py (z — Ho)~! is bounded). This
means

SUQ>0/N{||AP0()L +ie)ull® + [|AR( —i€)ul|?}dr < Cy < oo

for all u € PyH. This implies thatARy(- +i0)u € HZ(R, F) and ARy(- —
i0)u € H2(R, F) are Hardy class functions.

A1.2: The function

Cy 32— AP (z— Ho) tPs-A* (1)

is holomorphically continuable acro&, = (0, c0) and defines a holomor-
phic operator function off<o := C\(—o0c, 0]. This implies thatAP;" Ro(A +
i0)Pg-A* is bounded for every > 0.

(Note that (1) is a priori holomorphic not only d@h, but holomorphic in
Cso := C\[0.00). Therefore the lower half plane @- is called thesecond
sheebf (1), whereas the lower half plane 6%, is the first sheet.)

A2: supsol| APy Ro(x +10)P- A% =1 a < oo.
A3:|C|| < % (smallness condition).

Then supsol|®+(A+i0)| < 1 follows and ' (A +i0)= ([ — ®, (A +
i0))~! is holomorphic onR, = {A : A > 0}. Then, according to a theorem of
Gochberg/Krein (see Gochberg and Krein, 1957), one obtaing thatl", (2) is
meromorphic orC< . Using the relations of Section 2 this implies that also

z— W, (2):=B(z—H) A

is meromorphic orC<o. The poles of¥, are calledvirtual poles SinceW, is
holomorphic onC, for virtual poles¢ one has necessarifjt < 0. If ¢ is real
then¢ is an eigenvalue ofl (this is used in the proof of Theorem 3).
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Theorem 1. Assume conditions A1-A3. Then: H is self-adjoint, the wave oper-
ators W.(H, Ho) exist and are complete. H satisfies the conditions mentioned in
Section 1.

Therefore the scattering matr$1) exists as a unitary operator & a.e on
R,.

3.2. Analytic Continuation of the Scattering Matrix

In order to get analytic continuation for the scattering matrix, we need a
stronger assumption.

A4: Fa(r) := DYA* is a bounded operator frot to Ko for all » > 0 and this
function Fa(+) is holomorphic continuable t6<.
A4 is a strengthening of A1, i.e., A4 implies Al. Recall (first formally) that

AP;-Eo(dA) Ps- A* 1 . :

0 Oﬁm) 0" — E(APOLRO(A—W)POLA*—APOLRO()»—i—IO)POLA*)
or

N N n N  AP;-Eo(da) Py A*
AP;-Ro(A +i10)Py- A* = APy Ro(A — i0)Pg-A* — 2ixr 0 .

The left-hand side is, according to Al, holomorphic continuableCap.
Therefore, the first term on the right-hand side is also holomorphic continuable on
C- o (starting with the lower half plane of the first sheet).

Hence also

APy Eo(dA Py A*
di
is holomorphic continuable 08<¢. Foru, v € F we have

(u APy Eo(d2) P&A*v)  (PE AU, Eo(d1)PEAY)
) d)\, =

i = (D?Pg-A*u, DYPs-A*v),
i.e., Al implies and is equivalent to the statement that
puv(2) := (DPsA*u, DYPsA*v)

is holomorphic orC<q for all u, v € F. Therefore, if A4 is satisfied then also the
last statement, i.e., Al is true.

If FA(") is bounded then there is a well-known expression for the scattering
amplitudeT () (see, e.g., Baunagtel and Wollenberg [1983, p. 393)):

T(A) = —2i7 FA(L)(C + CAR( +i0)A*C)Fa(h)*.

From this formula one obtains immediately
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Theorem 2. Assume the conditions A2—A4. Thaif:) is meromorphic or€<o.

The poles ofl are calledesonances

3.3. Coincidence of Resonances and Nonreal Virtual Poles

Recall that the functiong’, andT are both meromorphic ofi<.
Theorem 3. The poles off and the nonreal poles df ., coincide.

Proof: It is sufficient to prove that a nonreal pafeof W, is a pole off and a
real pole of¥, is a holomorphic point fofl .

1. We have
C FA(A)*'f(A) Fa(A) = —2irCFa(A)*Fa(r)
x (C + W4 (A)C)FA(R)*Fa(r).

It is sufficient to show thag is a pole of the left-hand side. Note that

CFa(A)*Fa(r) = iCAPOL(RO()\ —1i0) — Ro(A +i0))Py- A*

= (@ ()~ @.0)).

This gives

CFA@*T(2)Fa(2) = —%(Q(Z) -, ()I+ ¥ (2)(P-(2)
—®.(2).
Recalll + V¥, (2) = (I — ®,))~L. This implies
P, (Q¥1(2) = VL (DP4(2) = V(2 — 24+ (D).
Let¢ be a pole of ordem, i.e.,
V. (2) =(z—¢)"™D, + C(2), D #0, m=>1
Then
fim (z — HMN@-(2) — ()AL + Y4 (2)(P-(2) — D+(2))

=(®_(¢) = 2(¢)De(P-(¢) = P+(¢)) = (L = D_(¢)) D (I — _(£))
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because of D, = ®.(¢)D; =D, P, (¢). But I—-®_(¢)=1—-
CAR(¢)A*and [ — ®_(¢))"* =1+ CAR(¢)A*. Hence

(I—-@_(¢)D,(I—-@_(5)) #0
follows. .
2. Areal poles of ¥, is a holomorphic point foil : First& is necessarily a
simple pole and an eigenvalue idf. The residuum ofv, até¢ is given by
D := BQA", whereQ is the eigenprojection df w.r.t. H, i.e., we have

BQA

Vi) = —=—+BQ(z-H)'Q A"

Note that the residuum is the same for both functignsand v, .
Further we use agaifl ¢ V4 (2)) = (I — ®(2))*- £ is a holomorphic
point for ®_(z) — ®,(z). We have to check the expression

©-0)- 0. (52 +CO) (©-0) - .(2),

z
Using 0= D(®_(§) — ®4(§)) = (®-(§) — ©+(£))D, we obtain
that& is a holomorphic point fofl . O

3.4. A Special Case: There Are No Embedded Eigenvalues (blf)

This means thatPy = 0. In this case we havé+ V¥, (z) =T, (2) and
Fa(r) = DYA*. Therefore ¥, andW_ are both holomorphic fox > 0 and

AE(dA) A*
da
is meromorphic orC< .
As an illustration we consider a special case: Cet I, H cyclic with gen-

erating unit vectoe € P2°H. In other words, we assume the multiplicity to be 1.
Lete = A*ey. Then

(e, E(A)€) = (e0, AE(A)A" &)
and
. (eo, AE(dA) A" &)
p(r) = &

is holomorphic ofiR , and meromorphic 0@« - p(-) is called thespectral density

Now let f, g be vectors fromP2H, generated by the functions, ¥,
respectively, i.e.,f = ¢(H)e, g =y (H)e. Then f =W, fs, g = W_go where
fo, 9o € H and

(fo, Syo) = /0 SOV (o) dh.
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Now choosep andv as restrictions ta. > 0 of functionsg € Hf(]R), v e
H2(R). Then

F() = o)y (1)o()

is meromorphic o _, the lower half plane, where possible poles are only due to
(). Thenff§+fc = —2irRes{F(2)} whereC denotes the negatively oriented
semicircel fromH-R to — R in the lower half plane and where Res means the sum
of all residua inside the corresponding semidisc. Ifdim, fc = 0 then one has

(S0 = [ GO (RIo(), 05— 2imResy, ofF (2)

4. EIGENFUNCTIONALS FOR RESONANCES

In this section we consider the special case that there are embedded eigenval-
ues ofHp, i.e. we assume

B1: Py > 0,
B2: z — I'(2) is holomorphic orC<, and
B3: A, B henceV are bounded.

This case is a counterpart to Section 3. B3 is assumed to avoid technical domain
discussions. Then we obtain immediately from Section 2.

Proposition 1. Assume additionally B1-B3. Then: The virtual poles are exactly
the poles of the partial resolvent, i.e., they are the zeros of the determinant of the
LivSic-matrix

def{L.(2) I PoH}.

In this case one can introduce appropriate eigenfunctionald fexactly for the
resonances, but not for other (nonreal) complex numbers.

4.1. Construction of the Gelfand Triplet

Theideais to use the spectral representatidihoRecall that B1-B3 together
with the results of Section 3 imply that also the wave operatéréH;, Hp) exist
and that they are complete, which implies thiat P&°H andHo P{H are unitarily
equivalent. Therefore, the absolutely continuous spectruht; a$ [0, co] and it
has homogeneous multiplicity. We denote the corresponding multiplicity subspace
by K1 and the evaluation operator B2
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Now we define alinear manifolt C P§°H. Avectorf e P§°H isanelement
of & iff

A — (Dif, D(PyVh)),.

is holomorphic orC<q for all h € PyH.
Then from Section 2 we obtain that

PV RhH C @.

® is dense inPf°H (see Baumaitel, 1976). We omit the explicit construction of
a suitable locally convex topology # such thatb is complete and continuously
embedded irP§H.

Since H; is unbounded in general, one has to introduce additionally the
linear manifold®, : dom(H;[Pg% N @, equipped with a slightly changed topol-
ogy (see Baumgrtel, 1976). TherH; is a continuous linear operator frofy
into ®, since together with@{; f, Di(Py-V h))x, also D}Hy f, DI (PyV h))x, =
M(D} f, DX(Py-V )k, is holomorphic orC<o.

As the fundamental manifold i we chooseD := © & PyH. We equipD
with the product topology ofb and PyH. ThenD is continuously embedded in
‘H. We haveD* = &* x PyH, i.e., the antilinear forms fror®* are pairs ¢*, ho)
with ¢* € ®* andhg € Py’H, such that

(@, X) | (8", o)) = (& | $") + (X, ho), ¢ € P, X € PoH.

The Hilbert spacé{ is canonically embedded info*, that is we obtain the Gelfand
triple

DCHCD". 2

Correspondingly we introducP; := ®; & PyH. ThenH is a continuous linear
operator fronD; into D because for any € H one has BV Py- + Py V Py)x €
D). The extensiorH* of H w.r.t. (2) (the so-called Gelfand triplet adjoint) is
defined by

(@, x) [ H (9", ho)) := (H(¢, X) [ (¢", ho)).

4.2. Eigenfunctionals forH*

The eigenvalue equation fét* reads

H*((p*,ho):{((p*,ho), g G(C<0.

Theorem 4. The nonreal complex numbere C.g is an eigenvalue of H iff
¢ is a resonance. In this case the eigenspacecfdr.e. the linear span of all
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eigenvectors) is given by
ker{L,(¢) 1 PoH} C PoH.

Proof: The eigenvalue equation can be split into two separate equations:

¢ =0 (£x — PoH1PoX, ho) = (P5Vic | 67, €)

X =0:((¢ = H)g | $") = (&, PgVho). (4)
ForJ¢ > 0 the solution of (4) is given by

(@19}) = (¢, (¢ — H) Py Vho.
Since Oj¢, D} (P;-V ho))k, is holomorphic onC< the antilinear forme; is
holomorphic onC<g. Inserting this solution into (3), we gex,((¢ — Hi)hp) =
(PoVx|¢f),ie.,
Dx(¢) = (X, (¢ — H1)ho) — (P x| ¢7)
should vanish for alk € PyH. FirstletJz > 0. Then
Dx(2) = (X, {z— H1 — PoV Py"(z — H1) Py Viho) = (X, L. (2)ho),

but this function is even holomorphic dix - Dx(2z) = O for all x € PyH means
simply L, (2)hp = 0, i.e., a solutiorhg € PyH, hg # 0, for a parameter with

Jz < Oexistsiffz := ¢ isaresonance. The eigen(anti-)linear forms for aresonance
¢ are given by

(¢c,ho,N0),  ho € ker{L(¢)IPoH},
where the antilinear form;,, for 3z > O is given by

(@ | $1n,) = (@, (z— H1) *P5-Vho). O
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